
Master Thesis

Reinforcement and modernization of the MISP open
source application
Thomas Lacroix

Academic Year 2024–2025

Final year internship done in partnership with

CIRCL - Computer Incident Response Center Luxembourg

in preparation for the engineering diploma of TELECOM Nancy

Internship supervisor: Sami Mokaddem

Academic supervisor: Jannik Dreier





Master Thesis

Reinforcement and modernization of the MISP open
source application
Thomas Lacroix

Academic Year 2024–2025

Final year internship done in partnership with

CIRCL - Computer Incident Response Center Luxembourg

in preparation for the engineering diploma of TELECOM Nancy

Thomas Lacroix
11b, Rue du Général Duroc
54 000, Nancy
06 46 05 70 23
thomas.lacroix@telecomnancy.eu

TELECOM Nancy
193 avenue Paul Muller,
CS 90172, VILLERS-LÈS-NANCY
+33 (0)3 83 68 26 00
contact@telecomnancy.eu

CIRCL - Computer Incident Response Center Luxembourg
122, Rue Adolphe Fischer
L-1521, Luxembourg
+352 274 00 98 625

Internship supervisor: Sami Mokaddem

Academic supervisor: Jannik Dreier

i

mailto:thomas.lacroix@telecomnancy.eu
mailto:contact@telecomnancy.eu


ii



Acknowledgements

First of all, I would like to express my gratitude to the team of Luxembourg House of Cybersecurity,
particularly the human resources department, for their warm welcome and support throughout my
internship.

I would also like to thank Alexandre Dulaunoy, head of CIRCL, for the trust he placed in me and for
welcoming me into his team.

I would especially like to thank Sami Mokaddem, my internship supervisor, for his constant support,
the time he devoted to me, and his availability and empathy throughout my internship.

I would also like to thank Jannik Dreier, my university supervisor, for his availability and valuable
advice, which helped me to successfully complete this internship and write my thesis.

Finally, I would like to thank all the members of CIRCL whom I had the opportunity to work with
on a daily basis and who welcomed me with kindness: Cédric, David, Michael, Andras, Quentin,
Luciano, Sascha, Deborah, Christian, Aurélien, and Gérard.

iii



iv



Contents

Acknowledgements iii

Contents v

1 Introduction 1

2 Internship context 3

2.1 Company overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Internship Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Initial project description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Personal Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Technologies used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 CakePHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.4 LXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.5 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.6 Forgejo Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 State of the art of MISP 7

3.1 Project history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Open source development and community collaboration . . . . . . . . . . . . . . 7

3.3 Technical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.1 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.3 Background workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.1 Identity and Access Management . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.2 Key items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



3.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Additions and synchronization options . . . . . . . . . . . . . . . . . . . . 13

3.5.3 Data distribution level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.4 Sharing groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Ecosystem and extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 Data enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.2 Import and export formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Comparison with other solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Functionality development and correction 19

4.1 Extended events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Feature request: whether or not to display the extended event in the index 19

4.1.3 Feature request: �ag to �lter with restsearch request . . . . . . . . . . . . 20

4.2 Warning lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Filtering on the attribute index . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 Explicit display of the warninglist category . . . . . . . . . . . . . . . . . 23

4.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Limiting the number of results from a restSearch . . . . . . . . . . . . . . 24

4.4 Minor additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Review of my contribution to misp-core . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Implementation of synchronization tests 29

5.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Choice of technologies used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Code hosting platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.2 Runner containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Migration from GitHub pipeline to Forgejo . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Explanation of Github CI pipeline for MISP . . . . . . . . . . . . . . . . . 31

5.3.2 Modi�cation apported for the Forgejo CI . . . . . . . . . . . . . . . . . . . 31

5.4 Setting up multiple local instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.1 Issue encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



5.4.2 Deploying multiple instances . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.3 Setting up synchronization between instances . . . . . . . . . . . . . . . . 33

5.4.4 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Development of synchronization tests . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 Technology and architecture for testing . . . . . . . . . . . . . . . . . . . 34

5.5.2 Topology for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.3 Details of the various tests implemented . . . . . . . . . . . . . . . . . . . 36

5.6 Pipeline for deploying multiple instances of MISP . . . . . . . . . . . . . . . . . . 41

5.7 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Project Management 47

6.1 Working method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Gantt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Project outlook 49

8 Conclusion 51

Bibliography / Webography 53

List of Figures 55

List of Tables 57

Listings 59

Glossary 61

Appendix 64

A Forgejo pipeline 64

Résumé 65

Abstract 65

vii



viii



1 Introduction

Cybersecurity threats are becoming more frequent and sophisticated in today’s world, which is
becoming more and more digital. Data breaches, ransomware attacks, and other malicious activi-
ties that can cause serious harm are a constant risk for governments, companies, and individuals.
The need for e�cient tools for detecting, evaluating, and disseminating threat intelligence across
borders and organizations is growing along with our dependence on digital infrastructures.

By creating and maintaining open-source tools that facilitate information sharing among orga-
nizations regarding cybersecurity threats, CIRCL (Computer Incident Response Center Luxem-
bourg) plays a crucial role in this e�ort. One of these tools is MISP Threat Sharing, a popular
threat intelligence platform made to enhance cyberattack detection and prevention via coopera-
tive data exchange. The work of CIRCL bene�ts a worldwide user community that depends on
timely and accurate information to strengthen their security systems.

During my internship at CIRCL, I contributed to this mission by both developing new features
and �xing issues within the MISP platform. In the �rst part of my work, I focused on enhancing
the application’s functionality and stability. In the second part, I designed and executed tests
to ensure proper synchronization of data across multiple interconnected MISP instances. This
work was essential for validating that critical threat intelligence could be reliably shared across
organizations using the platform.

1



2



2 Internship context

2.1 Company overview

CIRCL, created on 1 January 2008, is the national CERT for the private sector, municipalities
and non-governmental entities in Luxembourg. CIRCL is therefore a public service operated by
the LHC (Luxembourg House of Cybersecurity), a Luxembourg public entity. LHC hosts other
public services such as NC3 (National Cybersecurity Competence Center) and is funded by several
Luxembourg ministries and unions, including those responsible for the economy, education and
family a�airs. The service currently consists of 14 people, including security researchers, incident
analysts and developers [5]. Among the key tasks to be performed by CIRCL are:

• Provide a systematic response to incidents: coordination, analysis, correlation, investiga-
tion and remediation.

• Minimise impacts: losses, data theft or service disruption at national level.

• Share knowledge and alerts with ICT users in Luxembourg and internationally.

One of CIRCL’s main activities is therefore the creation and sharing of open-source software.
This software has various objectives, such as sharing information on threats for MISP, searching
for technical information on CVE vulnerabilities for Vulnerability Lookup, and analysing infor-
mation leaks on the Internet with the AIL (Analysis Information Leak) framework.

2.2 Internship Issue

2.2.1 Initial project description

The objective of this internship was to participate in the modernisation of MISP Threat Sharing,
one of the main applications developed by CIRCL. This application was constantly in need of new
features and �xes, while ensuring the reliability of the code it provided. Initially, I contributed
to the development and improvement of the application’s frontend and backend. Then, I worked
on the CI/CD pipeline to enhance code reliability by implementing secure coding practices and
automated testing. The work was carried out in an open source environment, with Pull Requests
submitted to present achievements to the project.

3



2.2.2 Personal Objective

During this internship, I set myself two goals. The �rst was to develop my technical skills in
software development. This was possible because I worked on an important application for which
I had to acquire a deep technical understanding of its architecture. I also learned for the �rst time
how to perform automated testing on an application via the CI/CD pipeline. The second goal
was to develop my knowledge of cyber threats by working in an environment where the �ow
and sharing of threat information is constant.

2.3 Technologies used

2.3.1 CakePHP

MISP is a web application based on the CakePHP framework, a framework that primarily uses
PHP but also other web development languages such as HTML/CSS and JavaScript. CakePHP
allows for the management of business logic (such as event management, attributes, users, or-
ganisations), interactions with the database, and the generation of views.

2.3.2 Python

Python is an interpreted, versatile programming language widely used in cybersecurity and
data analysis. In this project, I used PyMISP, a Python client for the MISP REST API, to develop
and run test scripts to verify the proper functioning of synchronization between multiple MISP
instances.

2.3.3 Docker

Docker is a containerisation technology that allows MISP and its dependencies to be packaged
and run in isolated, reproducible environments. In the context of development or testing, Docker
facilitates the rapid deployment of a MISP instance with MariaDB, Redis, and associated modules.
This approach simpli�es the setup of multiple instances for testing synchronization scenarios
without polluting the host system environment.

2.3.4 LXC

LXC (Linux Containers) is a lightweight virtualisation technology used to run MISP in an envi-
ronment closer to that of a virtual machine. Unlike Docker, LXC provides �ner process separation
and a complete �le system. In some CI con�gurations, LXC allows you to simulate MISP deploy-
ments close to production.

4



2.3.5 GitHub Actions

GitHub Actions is a continuous integration and deployment (CI/CD) platform integrated with
GitHub. It has long been used to automate MISP testing with each new contribution (pull request).
GitHub Actions work�ows allow you to run PHP, Python, or Shell scripts to ensure that features
are not broken by changes.

2.3.6 Forgejo Actions

Forgejo Actions is the equivalent of GitHub Actions for the decentralised software forge Forgejo,
a community fork of Gitea. It allows you to run CI/CD work�ows locally or in a private instance.

5



6



3 State of the art of MISP

3.1 Project history

In 2011, Christophe Vandeplas, a cybersecurity analyst, wanted to solve a rather annoying prob-
lem in the sharing of indicators of compromise. Most of them were shared by email or PDF
document, which made their analysis and use quite time-consuming. To remedy this, he decided
to develop his own tool capable of providing this information. Christophe Vandeplas �rst pre-
sented an initial version of his CyDefSIG (Cyber Defense Signatures) project to the Belgian armed
forces, where he worked. NATO then heard about the project and began assigning developers
to it. The project’s reputation began to spread throughout various CERTs in Europe, including
CIRCL, which is now the organization employing the project’s developers. As for the software
license, it was collaboratively decided to place it under the A�ero GPL license so that the code
could be publicly shared, thus ensuring the application’s longevity. The project is funded by the
European Union (through the Connecting Europe Facility) and the Computer Incident Response
Center Luxembourg. Nowadays, the MISP application is much more than just a malware indica-
tor sharing tool, from the numerous tools such as PyMISP to the various formats supported, the
entire project is now called MISP Threat Sharing.

3.2 Open source development and community collaboration

MISP is an open source project actively developed and maintained on the GitHub platform. Being
open source allows anyone to inspect the code and suggest improvements in addition to the four
developers working within CIRCL. This collaborative development model is manifested through
pull requests, in which contributors detail the changes they have made and their motivations.
These pull requests are then reviewed by the main maintenance developers, who ensure the qual-
ity of the code and its compliance with the project’s objectives before it is integrated.

In addition to code contributions, the Issue section of the repository plays a crucial role in the
community’s collaborative work. Users can report bugs, suggest new features, or ask questions
for clari�cation. This open section enables a transparent development cycle, where decisions and
corrections are visible to all interested parties.

7



3.3 Technical Architecture

The MISP architecture is composed of several entirely open source components, which allows to
have a �nished product that is as transparent as possible and fully community-driven.

3.3.1 Web Interface

At the heart of the application is the web interface, built on the CakePHP framework, an open
source MVC framework written in PHP. This choice allows for a clear separation between data
models, application logic, and the user interface. The use of CakePHP facilitates fast development,
consistent code structuring, and long-term maintainability. It also allows for the integration
of additional modules and APIs, which extend MISP’s functionality without compromising its
fundamental stability.

3.3.2 Data storage

Persistent data storage in MISP uses a relational database management system MariaDB. It is
a fully open source fork of MySQL, wihch o�ers high performance and full compatibility with
existing MySQL tools and libraries.

In addition to relational storage, MISP uses Redis, an in-memory key-value database engine.
Redis is used to cache frequently accessed data, manage sessions, and store temporary objects,
which signi�cantly improves the responsiveness of the application. Using a hybrid model like
this �nd the rigth balance between durability and data access, which is important in production
deployments where data integrity and performance are essential.

3.3.3 Background workers

To manage tasks that cannot be executed in the main web process, MISP integrates a system
of background workers managed by supervisord, a lightweight process control system. These
workers are responsible for asynchronous tasks, such as synchronizing events between di�erent
instances or delivering noti�cations.

3.4 Main features

3.4.1 Identity and Access Management

Before discussing the practical features of the application, it is important to understand how
access management is handled in MISP. Each deployment of the MISP application on a machine
is called an instance. On each instance of the application, every user necessarily belongs to an
organization. An organization is a group of users. For example, if we take the case of the �nancial
sector sharing community managed by CIRCL, CIRCL is the host organization of the instance and
is able to add an organization for each company in the �nancial sector that wishes to have access

8



to this instance. In addition, each user in an organization has their own role: Org admin (control
over users in their own organization), User (can create, edit, and view events according to their
rights), Read Only (can only view events).

After a user logs into the application, they are automatically redirected to the list of all events
present on the application (see Figure 3.1). This view allows users to quickly view information
about an event, such as its creator, associated clusters, and tags.

Figure 3.1: Landing page of the application (here a training instance)

3.4.2 Key items

In MISP, the central object is the Event. An event represents an incident or situation and con-
textually groups together all the information related to it. Each event has basic metadata, such
as its owner, access rights, creation date, and sharing level (see Figure 3.2).

An event can contain several other types of objects, including [3]:

• Attributes: these are atomic objects that represent information (e.g., IP address, domain
name, �le hash). They can be enriched by taxonomies and specify whether they are in-
tended to provide human context or to be used in an automated manner (see Figure 3.3).

• Objects: these are groupings of attributes based on a template For example, a �le object
may contain a �le name, an MD5 hash, an SHA1 hash, etc.

• Tags and Taxonomies: these are standardized labels based on common vocabularies, used
to classify or qualify data.

• Galaxies andGalaxyClusters: these are advanced labels, enriched with metadata. Galax-
ies represent a conceptual set (e.g., groups of attackers, malware, countries), and clusters are
speci�c instances of them (see Figure 3.4)) .

• Event Graph: a graphical representation showing the relationships between the di�erent
entities contained in the event.

9



• Event Timeline: a chronological representation of the data contained in the event, allow-
ing its temporality to be visualized.

• Event Report: a text document (supporting the Markdown format) allowing the event or
incident to be described in more detail, with narrative context.

These di�erent objects, when combined, enable MISP to e�ectively represent, structure, and en-
rich cybersecurity-related information. The values stored in the attributes can then be exported to
network protection equipment (�rewalls, intrusion detection systems, etc.) in order to automate
and strengthen defense measures.

Figure 3.2: Example of basic information associated with an Event in MISP

Figure 3.3: Example of attributes and objects linked to an Event in MISP

10



Figure 3.4: Example of galaxies associated with an Event in MISP

11



3.5 Synchronization

3.5.1 How it works

So far, we have seen that MISP is an application that allows you to enter information about an IT
incident and then export it to network protection equipment. This leaves us with one last funda-
mental objective to address: information sharing. Each organization can have its own instance
of the application, and it is possible that some organizations may agree to share information be-
tween their instances. This is why the concept of synchronization between instances/servers was
developed according to the conditions shown in Figure 3.5. If server B wants to share data with
server A, here are the steps to follow:

• Step 1: Add OrgB as a local organization on ServerA (OrgB.ServerA) using OrgB’s existing
uuid from their local organization on ServerB.

• Step 2: Add a Sync User (e.g. syncuser@OrgB.ServerA) in the organization OrgB.ServerA
on MISP ServerA.

• Step 3: Set up a sync server on MISP ServerB using the key (called Authkey) from the sync
user (syncuser@OrgB.ServerA) created on MISP ServerA.

Once these steps have been completed, it is possible to perform synchronization actions from
server B to server A. In other words, it is possible to send data from B to A (PUSH ) or to receive
data from A to B (PULL). It is also entirely possible to set up a mirror setup on A for even more
e�cient data sharing.

Figure 3.5: Diagram showing the synchronization setup between two instances [2]

12



3.5.2 Additions and synchronization options

Adding a new instance as a synchronization server is a relatively simple process (see Figure 3.6).
First, simply enter the URL where the instance is hosted and give it a name. Then de�ne the host
organization associated with the remote instance. This organization can be:

• already de�ned locally on the instance

• from remote organizations discovered during a previous synchronization process with an-
other server

• completely unknown, in which case it is necessary to provide its uuid

Once this step has been completed, it is possible to con�gure the di�erent synchronization meth-
ods authorized with this instance:

• enable PUSH and/or PULL events

• authorize PUSH of sightings

• enable PUSH and/or PULL of Galaxy Clusters

• enable PUSH and/or PULL of Analyst Data (comments left on attributes)

Other more technical settings are also available. Finally, it is possible to de�ne PUSH /PULL rules.
These rules allow, for example:

• some tags to be associated to indicate whether or not data should be synchronized

• synchronization to be restricted to certain organizations, or inversely, to exclude certain
organizations

13



Figure 3.6: Setup page to synchronize with another MISP instance

3.5.3 Data distribution level

In MISP, each piece of data (event, attribute, cluster, etc.) is associated with a distribution level.
This distribution level allows you to �lter data sharing. The di�erent distribution levels are:

• 0 - Your organization only: The information is only visible to the organization that cre-
ated it.

• 1 - This community only: The information is shared only with organizations present
locally on the MISP instance.

• 2 - Connected communities: The information can be shared with servers connected via
synchronization (partner MISP instances).

• 3 - All communities : The information can be shared with all connected servers, including
the servers of connected servers.

14



• 4 - Sharing group : The information is shared only with a de�ned sharing group (see
explanation in the following section), which allows precise control over which entities can
access the information.

To better understand the di�erence between the Connected communities and All communities
levels, let’s take a concrete example. Suppose there are three MISP instances: A, B, and C, where
A is connected to B, and B is connected to C, but A is not directly connected to C.

If an event E is created on instance A with a distribution level of 2 (Connected communities),
then when synchronizing with B, the event will be transmitted to B and its distribution level will
automatically be lowered to 1 (This community only). As a result, the event will not be relayed
further, and C will not receive it.

However, if the distribution level of event E on A is set to 3 (All communities), then this level is
retained on B, allowing B to synchronize it with C in turn. Thus, the event can propagate across
all connected instances, even indirectly.

3.5.4 Sharing groups

Sharing groups represent an additional level of distribution in MISP, allowing for more precise
control over data sharing. They o�er the possibility to de�ne precisely which organizations,
within which instances, can access a given piece of information.

For example, in Figure 3.7, the sharing group includes organizations Org1, Org2, Org4, Org5, as
well as all organizations in MISP3. These entities can thus exchange data between themselves on
instances MISP1, MISP2, and MISP3.

The most common use cases for sharing groups are to create reusable thematic subgroups in MISP
that share events or to set up ad hoc sharing scenarios (e.g., multiple organizations involved in a
speci�c incident that want to collaborate). In general, sharing groups add a level of complexity
for the users involved, as well as a performance overhead on the data associated with them.

15



Figure 3.7: Example of a sharing group between organizations from three MISP instances [2]

16



3.6 Ecosystem and extensibility

From the beginning of its development, MISP was designed to integrate with other cybersecurity
ecosystems so that it could be extended according to user needs. Several mechanisms enable
this, such as data enrichment, import/export in multiple formats, third-party integrations, and
dedicated modules.

3.6.1 Data enrichment

In MISP, it is possible to enrich the data already present in an event manually or automatically
via a module. Here are a few examples of enrichment:

• A �le hash can be sent to VirusTotal to obtain detection rates or metadata.

• An IP address can be resolved based on its geolocation or queried by Shodan to obtain some
information about exposed services.

• A domain name can be subject to passive DNS queries to identify associated subdomains.

3.6.2 Import and export formats

MISP natively supports a large number of import and export formats, to operate easily with other
platforms and tools. Supported formats include:

• STIX (1.x and 2.x): a widely used standard for structured cyber threat intelligence.

• OpenIOC: an XML-based format initially developed by Mandiant.

• CSV and JSON: for integration into custom work�ows and data pipelines.

• Bro/Zeek IDS and Snort/Suricata: for direct integration with intrusion detection and
prevention systems.

3.7 Comparison with other solutions

MISP is not the only application for sharing threat intelligence. There are several other solutions,
both open source and commercial, each o�ering di�erent features depending on the intended use
cases, integration requirements, or business models adopted. To name a few

• OpenCTI: an open source graph-oriented platform designed to represent complex entities
(groups, campaigns, vulnerabilities, etc.) in line with the STIX 2.1 standard. It facilitates
contextual analysis thanks to its advanced visualizations.

• TheHive: an incident management tool often coupled with Cortex for automated enrich-
ment. It can integrate threat intelligence feeds, but is not focused on inter-agency sharing.

17



• IBMX-Force Exchange: a commercial platform o�ering a large catalog of enriched threats
and integration capabilities with IBM security tools.

• ThreatConnect: an enterprise-oriented solution combining threat intelligence, process
automation (SOAR), and collaboration.

Among all these solutions, MISP stands out for its fully open source model, its widespread adop-
tion within CERTs, CSIRTs, and government communities, and above all for its native ability to
synchronize events between instances.

18



4 Functionality development and correction

The �rst part of my internship consisted of developing the MISP application in order to better
understand and explain its features. To do this, I used the Issue section of the GitHub repository.
This section is used by both the development team and the community to submit ideas for new
features and report bugs in the application. I was assigned certain issues that I had to resolve
by submitting a pull request, and for some issues, I submitted a pull request myself for bugs and
features that had not yet been reported.

4.1 Extended events

4.1.1 De�nition

The �rst feature I worked on during my internship was extended events. This feature allows
you to create an event that enriches an existing event without having to modify it. The goal is
to facilitate collaboration between di�erent organizations while respecting the sharing rules and
editing rights of each user [1].

In concrete terms, an extended event follows the classic structure of an MISP event, but it only
contains additions (attributes, objects, tags, etc.) related to an initial event, referenced by its uuid.
One of the major advantages of extended events is that they allow clear traceability of contrib-
utors, while avoiding risky manipulation of source events. They also address certain sensitive
use cases, such as the management of con�dential or embargoed information, by isolating it in a
separate but related event.

4.1.2 Feature request: whether or not to display the extended event in
the index

The �rst issue I worked on was to implement an option to visually display on the event index
(see Figure 4.1) whether one event extends another. This feature is important because it allows
a user to see at a glance which events in their instance extend others. Speci�cally, I added a
symbol to the description of the index for these events, and if the user activates a �lter, they see
the description of the extended event instead of the symbol.

19



Figure 4.1: Index of events with extended event display

4.1.3 Feature request: �ag to �lter with restsearch request

The second solution I worked on was to add an extended/extending parameter to the /events/rest-
Search URI of the MISP REST API 4.1. I also updated the API documentation to explain how to
use these new parameters.

The PHP function shown in listing 4.2 allows �ltering when the extended parameter is used in
the query. This function is more complex than the one used to �lter events that extend others,
because the necessary information is not directly accessible in the event object.

In fact, to identify extended events (or those that are not, depending on the value of the param-
eter), we �rst perform an initial query to the database to retrieve all events whose extends_uuid
�eld is not null. This provides a list of extended events, but it is then necessary to remove dupli-
cate UUIDs, as the same event can be extended multiple times.

A second query is then performed to retrieve the id/uuid pairs for all events. We can then isolate
the events whose ids match (or do not match) the uuids obtained previously, depending on the
value speci�ed by the user.

1 c u r l −k \
2 −X POST h t t p s : / / l o c a l h o s t / e v e n t s / r e s t S e a r c h \
3 −H " A u t h o r i z a t i o n : API_KEY " \
4 −H " Accept : a p p l i c a t i o n / j s o n " \
5 −H " Content− type : a p p l i c a t i o n / j s o n " \
6 −d ’ { " r e t u r n F o r m a t " : " j s o n " , " org " : " 1 2 3 4 5 " , " p u b l i s h e d " : f a l s e , "

e x t e n d i n g " : f a l s e } ’

Listing 4.1: Example of a POST API request to a REST endpoint

20



1 p u b l i c f u n c t i o n s e t _ f i l t e r _ e x t e n d e d (& $params , $ c o n d i t i o n s , $ o p t i o n s )
2 {
3 i f ( ! i s s e t ( $params [ ’ ex tended ’ ] ) ) {
4 r e t u r n $ c o n d i t i o n s ;
5 }
6 / / I f ex tended i s an array , i t means t h a t the u s e r i s f i l t e r i n g f o r

both ex tended and not ex tended e v e n t s
7 i f ( i s _ a r r a y ( $params [ ’ ex tended ’ ] ) && i n _ a r r a y ( 1 , $params [ ’ ex tended ’ ] )

&& i n _ a r r a y ( 0 , $params [ ’ ex tended ’ ] ) ) {
8 r e t u r n $ c o n d i t i o n s ;
9 } e l s e {

10 $ex tended = f i l t e r _ v a r ( $params [ ’ ex tended ’ ] ,
FILTER_VALIDATE_BOOLEAN ) ;

11 }
12 / / S t e p 1 − E x t r a c t the UUIDs o f the e v e n t s t h a t a r e ex tended and

remove d u p l i c a t e s
13 $ t a r g e t U u i d s = a r r a y _ u n i q u e ( $ t h i s −> f i n d ( ’ column ’ , a r r a y (
14 ’ f i e l d s ’ => a r r a y ( ’ Event . e x t e n d s _ u u i d ’ ) ,
15 ’ c o n d i t i o n s ’ => a r r a y ( ’ Event . e x t e n d s _ u u i d != ’ => ’ ’ ) ,
16 ’ r e c u r s i v e ’ => −1
17 ) ) ) ;
18 / / I f t h e r e i s no even t with e x t e n d s _ u u i d ( e x t e n d i n g ) , t h e r e i s

b a s i c a l l y no eve n t ex tended
19 i f ( empty ( $ t a r g e t U u i d s ) ) {
20 $ c o n d i t i o n s [ ’AND ’ ] [ ] = a r r a y ( ’ Event . i d ’ => −1) ;
21 r e t u r n $ c o n d i t i o n s ;
22 }
23 / / S t e p 2 − E x t r a c t the UUIDs and i d s o f a l l e v e n t s
24 $ a l l E v e n t s = $ t h i s −> f i n d ( ’ l i s t ’ , a r r a y (
25 ’ f i e l d s ’ => a r r a y ( ’ Event . uuid ’ , ’ Event . i d ’ ) ,
26 ’ r e c u r s i v e ’ => −1
27 ) ) ;
28 / / S t e p 3 − F e t c h the e v e n t s t h a t a r e ex tended or not ex tended
29 $ l i n k e d E v e n t I d s = a r r a y ( ) ;
30 i f ( $ ex tended ) {
31 f o r e a c h ( $ t a r g e t U u i d s as $uuid ) {
32 i f ( i s s e t ( $ a l l E v e n t s [ $uuid ] ) ) {
33 $ l i n k e d E v e n t I d s [ ] = $ a l l E v e n t s [ $uuid ] ;
34 }
35 }
36 } e l s e {
37 f o r e a c h ( $ a l l E v e n t s as $uuid => $ i d ) {
38 i f ( ! i n _ a r r a y ( $uuid , $ t a r g e t U u i d s , t r u e ) ) {
39 $ l i n k e d E v e n t I d s [ ] = $ i d ;
40 }
41 }
42 }
43 i f ( empty ( $ l i n k e d E v e n t I d s ) ) {
44 $ c o n d i t i o n s [ ’AND ’ ] [ ] = a r r a y ( ’ Event . i d ’ => −1) ;
45 } e l s e {
46 $ c o n d i t i o n s [ ’AND ’ ] [ ] = a r r a y ( ’ Event . i d ’ => $ l i n k e d E v e n t I d s ) ;
47 }
48 r e t u r n $ c o n d i t i o n s ;
49 }

Listing 4.2: Filter function used for extended �ag

21



4.2 Warning lists

4.2.1 De�nition

MISPwarninglists are lists of known indicators, generally associated with potential false positives,
errors, or irrelevant information. The name of this object can be misleading, as a warninglist does
not refer to cyber threats, but rather to items that are best ignored or treated with caution.

By default, MISP o�ers a large number of warninglists that users can activate as needed, partic-
ularly to identify potentially unreliable attributes. Users also have the option of creating their
own custom warninglists.

4.2.2 Filtering on the attribute index

MISP o�ers a summary index listing all the attributes associated with all the events present in
the instance. On this interface, it is possible to �lter attributes according to several criteria: by
category (IP address, hash, etc.), by associated tags, or by their raw value.

However, it was not possible from this index to exclude attributes present in a warning list, or
even to view whether they belonged to one.

To solve this, I added a checkbox to the search interface. When enabled, it triggers the use of two
existing �ags, includeWarninglistHits and enforceWarninglist, to ensure correct �ltering in the rest
of the code.

The correct use of these parameters has also made it possible to add a visual indicator in the
index, explicitly signaling the attributes present in a warninglist (see Figure 4.2).

Figure 4.2: Index of attributes for a misp training instance. Here three attributes have been iden-
ti�ed in warning lists.

22



4.2.3 Explicit display of the warninglist category

Currently, from the event view, when an attribute matches an entry in an activated warninglist,
a red box is displayed to indicate the warninglists concerned.

However, MISP distinguishes between two types of warninglists:

• False Positive: generic indicators, often found in the analyzed data, but not very relevant
in the context of threat detection;

• Known Identi�er: indicators speci�c to the owner of the MISP instance (such as internal
IP ranges or legitimate certi�cates), useful for avoiding internal false positives.

So I implemented a second visual insert, which is displayed according to the category of the
warninglist to which an attribute corresponds. This makes it possible to visually distinguish
attributes corresponding to False Positives from those linked to Known Identi�ers (see Figure 4.3).

In addition, from a more backend perspective, I added the ability to �lter event attributes based on
the warninglist category from the event view. Until now, �ltering only allowed you to di�eren-
tiate between attributes present or not present in a warninglist, without distinguishing between
the warninglist categories.

Figure 4.3: New interface element (in yellow) showing the explicit separation warninglists ac-
cording to their category

4.3 Roles

4.3.1 De�nition

As brie�y mentioned above, users of a MISP instance are assigned a role that determines the
scope of their rights within the application. By default, MISP o�ers six main roles:

• Site Admin: superuser of the instance, with full access (user management, viewing of all
data, etc.);

23



• Org Admin: administrator of a speci�c organization, can manage users, events, and logs
related to their organization;

• Sync User: role reserved for users serving as synchronization points between instances,
via dedicated authentication keys;

• Publisher: authorized to publish (set something as ready to be synchronized) events;

• Read-only: read-only access, without modi�cation rights;

• User: standard user with limited permissions, depending on the con�guration of their role.

The administrator of a MISP instance can, of course, create new custom roles by combining the
various available rights as needed.

4.3.2 Limiting the number of results from a restSearch

As a reminder, any user can query the MISP REST API via routes such as /events/restSearch to
obtain a large amount of data. In the case of an instance containing a large volume of events,
overly broad or repeated queries can quickly lead to overload or even denial of service.

To mitigate this risk, I have introduced a new option when creating (or modifying) a role, allowing
you to set a maximum limit on the number of results returned per query, depending on the role
of the user making the query (see Figure 4.4

If no explicit limit is de�ned for a given role, the global value con�gured at the instance level (by
the administrator) will be used by default.

Figure 4.4: Default roles index of a MISP instance

24



4.4 Minor additions

REST API

As I had the opportunity to work with the MISP REST API for the tasks mentioned above, I was
able to identify a few bugs and features that could be easily implemented.

In MISP, most API requests allow you to specify a returnFormat �ag to indicate the format you
expect in the response. However, some users may not be aware that this option exists or may
simply be more accustomed to using the standard HTTP mechanism (the Accept header) to de�ne
the desired return format.

That is why I made changes to the source code to take this possibility into account. If the re-
turnFormat �ag is not speci�ed, then the response format will be determined by the value of the
Accept header, provided that it corresponds to one of the formats o�cially supported by MISP
(such as JSON, XML, CSV, etc.).

When frequently using the REST client integrated into MISP, I noticed that the curl command
automatically generated for the user never contained the -k option, even though the skip SSL
validation option was checked. I therefore modi�ed the code so that it adds the �ag, allowing the
user to execute the command directly without encountering an error message.

Event view

At the top of Figure 3.3, you can see a list of black buttons representing shortcuts for performing
various actions on the attributes and objects of an event. However, the shortcut action for adding
attributes directly from a �le in a supported format (OpenIOC, ThreatConnect, MISP JSON, CSV,
etc.) was not present. I therefore implemented a dedicated button to perform this operation.

Getting started with Galaxies

Like events, galaxies and galaxy clusters are objects that can be shared during synchronization.
Galaxies and their clusters also have their own distribution level, with the galaxy level always
being more restrictive than the cluster level. Figure 4.5 shows a detailed view of a galaxy, with
essential information about each of its clusters.

A cluster, and by extension the galaxy to which it belongs, can be attached to an event, but also
more speci�cally to an attribute. The detailed view of a cluster, illustrated in Figure 4.6, shows
how many events this cluster is attached to. However, before my intervention, this view did
not specify the number of attributes to which the cluster was linked. If the cluster is attached
to an event, it is automatically associated with all of that event’s attributes. If the user clicks
on the number of linked attributes, they are redirected to the attribute index page (Figure 4.2),
automatically �ltered on the corresponding cluster.

25



Figure 4.5: View of a custom MISP galaxy with 2 cluster

Figure 4.6: View of a MISP cluster indicating the number of attributes associated with it

First tests

Finally, to begin the second part of my internship focused on automated testing, I wrote two new
tests for the continuous integration (CI) pipeline. These tests, written in Python using the pymisp
library, validate some of the features mentioned above:

• The �rst test creates several events linked together (via the extended attribute) and veri�es
the accuracy of the REST API responses according to the di�erent possible values of the
extended parameter: 0, [0,1], true, etc.

26



• The second test generates di�erent types of warninglists, then creates an event with at-
tributes corresponding to these lists. It veri�es that the attributes are correctly detected as
belonging to an activewarninglist and that they are correctly associated with their category
(False Positive or Known Identi�er).

4.5 Review of my contribution to misp-core

This �rst part of my internship allowed me to gain a better understanding of the application’s
main features and their technical implementation. I had the opportunity to contribute to both
the user interface, by improving the display of extended attributes and warning lists, and the
backend, by strengthening the �ltering of the attribute index and adding new query �ags for the
REST API.

On this last point, I gained a lot of technical knowledge by learning how such features are imple-
mented in a large-scale application. These contributions have improved the usability, security,
and traceability of MISP, while consolidating its functional robustness.

Finally, by writing the �rst automated tests, I prepared the ground for the second part of my
internship, which focuses on testing synchronization.

27



28



5 Implementation of synchronization tests

5.1 Problem de�nition

As mentioned in the state of the art of the MISP application, one of its main strengths resides in
its ability to allow di�erent instances to synchronise their data, which facilitates e�cient infor-
mation sharing. However, to date, CIRCL has not yet set up a test environment or continuous
integration (CI) pipeline to comprehensively verify the proper functioning of all these synchro-
nization mechanisms.

The objective assigned to me is therefore to set up a pipeline capable of running a series of tests
with each new commit to the project to ensure that the synchronization features continue to
function correctly. To do this, it will be necessary to deploy several instances of MISP on the
same machine so that they can interact with each other via the synchronization system.

5.2 Choice of technologies used

Currently, the MISP project uses GitHub Actions (GitHub’s continuous integration solution) to
run tests on the application’s basic features.

However, GitHub Actions imposes limited resources for public projects. Since synchronization
tests can be resource-intensive, we opted for an alternative solution that does not impose such
constraints.

5.2.1 Code hosting platform

Before I began my study, the CIRCL team explained that they had a server hosting an instance of
Forgejo to back up their various projects locally. Forgejo is a fully open source, self-hosted code
management platform. One of its features allows automatic synchronization every X minutes
with a project hosted on another platform (such as GitHub).

I therefore began by studying the various technologies that enable continuous integration to be
implemented locally with Forgejo. Initially, I looked at independent CI solutions such as Wood-
pecker, Drone CI, and Jenkins. However, I discovered that starting in July 2023, a new version of
Forgejo will o�er its own continuous integration solution: Forgejo Actions.

Although this technology is still relatively new—which means there is limited documentation and
few examples available—I chose to use it. The main reason is that the syntax of Forgejo Actions

29



work�ows is very similar to that of GitHub Actions, which will greatly facilitate my work later
on.

5.2.2 Runner containerization

In Forgejo, the runner is the element responsible for executing the jobs de�ned in the continuous
integration work�ows. It interprets the steps in the con�guration �le (e.g., compilation, testing,
deployment) and executes them in an isolated environment.

The runner can be con�gured to run in di�erent environments, including a Docker container or
an LXC container. I chose to use an LXC container because it o�ers a better compromise between
isolation and performance. Unlike Docker, which imposes a certain level of network and system
abstraction, LXC provides an environment closer to a traditional system, while retaining the
advantages of isolation. This makes it particularly suitable for complex scenarios such as the
deployment of multiple MISP instances that need to communicate with each other via internal
network interfaces. In addition, using LXC allows for better control over the system con�guration
of each instance (network, services, volume management), which is an important advantage when
testing synchronization between multiple MISP instances.

Figure 5.1 illustrates how my local Forgejo setup works. The Forgejo server runs in a Docker
container, which I have linked to a runner installed in a separate LXC container. Communication
between the runner and the server is achieved using a connection key and by correctly con�g-
uring the LXC broadcast address.

When a commit is made to a repository where Forgejo Actions is enabled, the runner automati-
cally creates a temporary LXC container based on an Ubuntu distribution to run the pipeline.

Figure 5.1: Local setup of a forgejo instance and a runner

30



5.3 Migration from GitHub pipeline to Forgejo

5.3.1 Explanation of Github CI pipeline for MISP

When a commit is made to the MISP project’s GitHub repository, GitHub automatically triggers
a CI process if it detects one or more work�ows de�ned in the repository. These work�ows are
described in YAML �les located in the project’s .github/work�ows/ directory.

Each YAML �le can contain one or more jobs. A job corresponds to a sequence of instructions to
be executed in a given environment. These jobs are themselves composed of several steps, which
are executed linearly. Each step is generally independent and corresponds to a shell command
(e.g., installing dependencies, launching services, running tests, etc.).

Speci�cally, in the case of MISP, the GitHub pipeline begins by de�ning the operating system on
which the jobs will be executed (in this case, a Linux distribution). It then installs all the depen-
dencies necessary for the application to function properly, specifying the compatible versions.

Docker containers are then launched for the services required by MISP, such as MariaDB for the
database and Redis for queue management. The MISP application is then installed and con�gured
automatically, similar to a manual installation via an installation script.

Finally, test �les are run. These tests simulate user behavior and verify that the application’s
critical features are working properly. If any of the tests fail, the pipeline stops and displays an
error message detailing the cause of the problem.

5.3.2 Modi�cation apported for the Forgejo CI

The �rst step in the Forgejo pipeline is to specify the environment in which the job will run.
Here, since we want to ensure good isolation, reproducibility, and �exibility, we do not run the
job directly on the runner, but in a secondary container deployed on that runner. To do this, we
use the runs-on: lxc label.

In order to use the same image as the one used in the GitHub Actions pipeline, we specify con-
tainer:image: ubuntu:jammy.

Another important di�erence is that, unlike GitHub Actions, we cannot launch Redis and Mari-
aDB in separate Docker containers. Using an LXC container therefore requires manual installa-
tion of these services inside the container.

Finally, some GitHub Actions repositories, such as action/checkout, have a fork compatible with
Forgejo, but this is not the case for the majority of actions. I therefore cloned these repositories
locally on my Forgejo instance so that I could use them directly in the pipeline.

This new pipeline runs in roughly the same time as those on GitHub, in less than ten minutes.

31



5.4 Setting up multiple local instances

5.4.1 Issue encountered

Once the deployment pipeline for a single MISP instance was �nalized, I began writing a �rst
version of a pipeline that would allow multiple instances to be deployed in parallel. Once this
version was functional, I wrote a basic synchronization test. However, each run of my test took
about ten minutes for the pipeline to complete. This made the test cycle slow and ine�cient.
To avoid this constraint, I decided to create a script capable of quickly deploying multiple local
instances of MISP.

5.4.2 Deploying multiple instances

In a previous project, I had the opportunity to use an additional MISP repository called misp-
docker, which allows you to easily deploy an instance via Docker. So I reused the docker-compose
provided in this repository, adapting it so that a loop automatically deploys multiple instances.
Figure 5.2 shows the technical architecture of a local deployment of multiple instances of misp
with docker.

For each instance, the script generates:

• a separate application container and database container (e.g., misp_1, misp_2, . . . )

• a separate folder for con�guration �les (e.g. /instance_1/con�g, /instance_2/con�g, . . . )

• a unique HTTP port (8081, 8082, . . . )

This deployment step is the most time-consuming part of the script (mainly due to the deployment
of MISP containers). Once all instances have been started, a manual step is still required: the user
must log in to each instance to retrieve the API key for their administrator account, which is
essential for subsequent API calls.

32



Figure 5.2: Technical architecture for local deployment of 2 MISP instances

5.4.3 Setting up synchronization between instances

Once the administrator keys have been retrieved, the script asks the user to de�ne the synchro-
nization topology. Speci�cally, for each instance, you must specify which other instances will be
considered servers. For example, if instance 1 is to synchronize with instances 2 and 5, the user
must enter: 1 5.

The script then proceeds as follows:

• Creation of organizations: on each instance, it creates - organizations (where - is the
number of instances), ensuring that organization - shares the same uuid on all instances.

• De�nition of the host organization: for each instance - , organization - becomes the
host organization. An orgAdmin user is also created to manage objects.

• Creation of synchronization users: for each user-de�ned relationship (e.g., instance 1 –
> servers 2 and 5), the script creates a syncUser in organization 1 on instance 2, and another
on instance 5.

• RetrievingAPI keys: the synchronization user keys are then used to con�gure the remote
servers.

It is important to avoid using URLs such as http://localhost:808X when creating servers. Instead,
use the internal address of the Docker network, in the form http://misp_X.

Finally, to avoid con�icts, the script con�gures a separate Redis ID for each instance.

5.4.4 Additional features

Optionally, the script also allows you to:

33



• automatically deploy a sharing group on the �rst instance of the topology

• establish an internal connection between the last two instances to test local object sharing

5.5 Development of synchronization tests

5.5.1 Technology and architecture for testing

Like the other application integration tests, my synchronization tests will be written in Python.
This task will be made easier by the fact that MISP has its own Python library, PyMISP. This
library makes it easier to call the API using pre-built functions [4]. In addition to the PyMISP
library, I use the unittest library to write test classes. Furthermore, since MISP synchronization
can be performed at di�erent levels, I decided to separate the tests into thematic �les in order to
improve the scalability and readability of the code.

Listing 5.1 below illustrates the general structure of a test. To create and modify the various
objects used in the test, I use a user of type Org_admin, included in the list misps_org_admin. I
do not use the default user, namely the super administrator (misp_site_admin), because the latter
has extended rights allowing them to see certain information that is inaccessible to other users.

However, to perform synchronization actions (server retrieval, PUSH and PULL operations), it is
necessary to use the instance’s super administrator, as they are the only one with access to these
server action settings.

34



1 c l a s s T e s t L o c k e d S t a t u s ( u n i t t e s t . Tes tCase ) :
2 d e f t e s t L o c k e d S t a t u s O n P u s h ( s e l f ) :
3 " " "
4 V e r i f i e s t h a t the ’ l o c k e d ’ a t t r i b u t e o f an ev en t i s c o r r e c t l y s e t t o

True when the even t i s pushed .
5 Ensures t h a t the even t cannot be m o d i f i e d on the t a r g e t MISP i n s t a n c e s

a f t e r s y n c h r o n i z a t i o n .
6 " " "
7 s o u r c e _ i n s t a n c e = misps_org_admin [ 0 ]
8 # C r e a t e a new even t on the s o u r c e i n s t a n c e
9 eve n t = c r e a t e _ e v e n t ( ’ \ n Event f o r l o c k e d s t a t u s on push ’ )

10 eve n t . d i s t r i b u t i o n = 2 # S e t d i s t r i b u t i o n t o ’ Connected Community ’
11 eve n t = s o u r c e _ i n s t a n c e . add_event ( event , p y t h o n i f y =True )
12 c h e c k _ r e s p o n s e ( ev en t )
13 s e l f . a s s e r t I s N o t N o n e ( even t . i d )
14 uuid = eve n t . uu id
15 p u b l i s h _ i m m e d i a t e l y ( s o u r c e _ i n s t a n c e , event , w i t h _ e m a i l = F a l s e )
16 t ime . s l e e p ( 2 ) # the eve n t t o p r o p a g a t e i t t o l i n k e d i n s t a n c e s
17 # R e t r i e v e the s e r v e r c o n f i g u r a t i o n s l i n k e d t o the s o u r c e i n s t a n c e
18 s e r v e r s = m i s p s _ s i t e _ a d m i n [ 0 ] . s e r v e r s ( )
19 s e r v e r s _ i d = g e t _ s e r v e r s _ i d ( s e r v e r s )
20 i f not s e r v e r s _ i d :
21 r a i s e E x c e p t i o n ( " No s e r v e r c o n f i g u r a t i o n found f o r the s o u r c e

i n s t a n c e " )
22 # For each l i n k e d t a r g e t i n s t a n c e , v e r i f y t h a t the eve n t e x i s t s and i s

l o c k e d
23 l i n k e d _ s e r v e r _ n u m b e r s = e x t r a c t _ s e r v e r _ n u m b e r s ( s e r v e r s )
24 f o r t a r g e t _ i n d e x i n l i n k e d _ s e r v e r _ n u m b e r s :
25 t a r g e t _ i n s t a n c e = misps_org_admin [ t a r g e t _ i n d e x − 1 ]
26 s e a r c h _ r e s u l t s = t a r g e t _ i n s t a n c e . s e a r c h ( uuid = uuid )
27 s e l f . a s s e r t G r e a t e r (
28 l e n ( s e a r c h _ r e s u l t s ) , 0 ,
29 f " Event not found on MISP_ { t a r g e t _ i n d e x } a f t e r push "
30 )
31 f o r r e s u l t i n s e a r c h _ r e s u l t s :
32 s e l f . a s s e r t T r u e ( r e s u l t [ ’ Event ’ ] [ ’ l o c k e d ’ ] , f " Event on MISP_ {

t a r g e t _ i n d e x } i s not l o c k e d " )
33 # Attempt t o update the even t on each t a r g e t i n s t a n c e and v e r i f y t h a t

m o d i f i c a t i o n i s not a l l o w e d
34 f o r t a r g e t _ i n d e x i n l i n k e d _ s e r v e r _ n u m b e r s :
35 t a r g e t _ i n s t a n c e = misps_org_admin [ t a r g e t _ i n d e x − 1 ]
36 # Try t o add an a t t r i b u t e t o the l o c k e d eve n t
37 e v e n t _ t o _ u p d a t e = t a r g e t _ i n s t a n c e . g e t _ e v e n t ( event , p y t h o n i f y =True )
38 e v e n t _ t o _ u p d a t e . a d d _ a t t r i b u t e ( ’ t e x t ’ , ’ Th i s shou ld not be a l l o w e d ’

)
39 t a r g e t _ i n s t a n c e . u p d a t e _ e v e n t ( e v e n t _ t o _ u p d a t e , p y t h o n i f y =True )
40 # Ensure the even t was not m o d i f i e d
41 u p d a t e d _ e v e n t = t a r g e t _ i n s t a n c e . s e a r c h ( uuid = uuid )
42 s e l f . a s s e r t N o t E q u a l (
43 l e n ( u p d a t e d _ e v e n t [ 0 ] [ ’ Event ’ ] [ ’ A t t r i b u t e ’ ] ) , 2 ,
44 f " Event on MISP_ { t a r g e t _ i n d e x } was m o d i f i e d d e s p i t e be ing

l o c k e d "
45 )
46 # Cleanup : remove a l l t e s t e v e n t s and b l o c k l i s t s from a l l i n s t a n c e s
47 f o r i n s t a n c e i n m i s p s _ s i t e _ a d m i n :
48 p u r g e _ e v e n t s _ a n d _ b l o c k l i s t s ( i n s t a n c e )

Listing 5.1: Example of a synchronization test

35



5.5.2 Topology for testing

Figure 5.3 shows the topology chosen for setting up synchronization tests. It consists of seven
instances. On each instance, the organization with the same number is de�ned as the host or-
ganization, while the other organizations are also present locally. This topology allows us to
evaluate all the particularities that may arise during synchronization. From MISP 1, for example,
it is possible to test the propagation of an event across multiple instances when its distribution
is set to All communities. We can also check the functionality of sharing groups.

Between MISP 5 and MISP 6, synchronization is unidirectional, unlike other connections, which
are bidirectional. This choice is necessary: if two instances were connected in bidirectional mode,
as soon as an event was pushed, it would be automatically sent back by the remote instance, thus
preventing the PULL functionality from being tested correctly.

Finally, the MISP 6 and MISP 7 instances are con�gured as internal instances. In practical terms,
this means that they share the same host organization, which allows local tags and clusters to be
shared during synchronization.

In the next section, I will present the various tests that have been set up. Note that I will only
present the version for the PUSH mechanism, as the version for the PULL mechanism is quite
similar.

Figure 5.3: Setup scenario for synchronization tests

5.5.3 Details of the various tests implemented

Propagation tests on the topology

This test consists of publishing an event whose distribution is de�ned on Connected communities
from each instance of the topology, in order to verify that it is properly propagated to the con-
nected servers. The objective, in addition to validating the PUSH and PULL mechanisms, is to
ensure that the connections between the di�erent instances are working properly.

36



Publication tests

I also implemented a publication test to verify that an event is only synchronized at the appropri-
ate time. When an event has just been created and the user performs a PUSH ALL, it should not
be synchronized immediately. For this to happen, the event must be published: once published, it
is then automatically pushed to the connected servers, without any additional action on the part
of the user. As a reminder, publishing serves to con�rm that an event is complete and ready to
be shared.

Tests on synchronization methods

As mentioned earlier (see Figure 3.6), there are other synchronization methods besides simple
event propagation.

• Synchronization of sightings: Sightings are metadata that a user can add to an event or
attribute to indicate whether they have actually observed that data. I set up an initial test
to verify that the addition of a sighting is correctly propagated between servers.

• Synchronization of analyst data: it is also possible to synchronize analyst data, which
corresponds, for example, to comments added by an analyst to a piece of data to express an
opinion or provide additional context. I implemented a test consisting of adding an analyst
data to an event in order to validate its correct synchronization,

• Synchronization of galaxy clusters: the synchronization of galaxy clusters is indepen-
dent of events (distribution is visble on 4.5). When a user creates a galaxy cluster and
publishes it, it is automatically synchronized with the connected servers (if the option is
enabled). I therefore implemented a test simulating this operation.

Tests on event modi�cation

Beyond simple event synchronization, it is also important to verify that any changes made to an
event are correctly propagated. For example, if the description of an event is modi�ed, this update
must be re�ected on the connected servers. To do this, I created a test function that publishes an
event, then modi�es the event.info �eld before republishing the event, in order to verify that the
modi�cation is taken into account during synchronization. Inversely, it should not be possible to
modify an event on the instance that synchronized it, so I have another test that veri�es this (see
Listing 5.1) by checking in particular whether the locked �ag has been set to True.

Event enrichment tests

Event enrichment can be achieved in several ways:

• Adding attributes: I performed an initial basic test consisting of adding an attribute to an
event, then checking that it appeared correctly after synchronization;

• Adding objects: similarly, I added a complete object to an event, then checked after pub-
lication that all the information in this object was correctly synchronized on the target
instances.

37



• Adding tags: I also tested the synchronization behavior of tags. Unlike other objects, a tag
can be attached in two di�erent ways: - globally, in which case it must be synchronized with
the associated event, - or locally, in which case it must not be synchronized (see Figure 5.4).

• Adding galaxies: same behavior as tags.

• Adding an event report: �nally, I implemented a test that consists of creating an event
report linked to an event, then verifying that this report is correctly synchronized after the
corresponding event is published.

Figure 5.4: Event with a global tag and a local tag

Tests on attribute modi�cation

Several tests were also implemented on attributes:

- Modi�cation of an attribute: as with events, I modi�ed the value of an attribute and then
checked, after synchronization, that the modi�cation had been taken into account.

- Deleting an attribute: I wrote a test that deletes an attribute from an event, then republishes
the event to verify that the attribute is also deleted on the connected servers.

- Proposals for modi�cation and deletion: it is also possible to make proposals on attributes
(see Figure 5.5). I therefore implemented tests similar to the previous ones to verify that the
synchronization of modi�cation and deletion proposals works correctly.

38



Figure 5.5: Example of proposals to delete and modify an attribute

Distribution tests

Distribution tests have two main objectives: (1) to verify whether an event is actually synchro-
nized on the target instance based on its distribution level, and (2) to check the distribution level
applied to the event once it has been transferred to the target instance. The detailed behavior is
illustrated in Tables 5.1 and 5.2.

Distribution on A Result on B
Your organization only The event is not transferred.
This community only The event is not transferred.
Connected communities The distribution level is reduced to This community

only on B.
All communities The distribution level remains All communities.

Table 5.1: Case of Push: Instance A→ Instance B

Distribution on A Result on B
Your organization only The event is imported only if the synchronization

user belongs to the organization that owns the event
on A. The distribution level remains Your organiza-
tion only.

This community only The distribution level is reduced to Your organization
only on B.

Connected communities The distribution level is reduced to This community
only on B.

All communities The distribution level remains All communities.

Table 5.2: Case of Pull: Instance B← Instance A

Just like events, galaxies and galaxy clusters have their own distribution level and, consequently,
their own synchronization mechanism. However, they obey the same synchronization rules as
those presented in the tables above.

An additional rule applies, however: since a galaxy cluster is an instance of a galaxy, its dis-
tribution level must be less than or equal to that of the galaxy to which it belongs in order for
synchronization to be possible. For example, a cluster de�ned with the Connected communities
distribution (level 2) within a galaxy whose distribution is Your organization only (level 0) cannot
be synchronized.

Tests on internal servers

Synchronization between internal instances follows the same synchronization cases as those de-
scribed above, but also has certain speci�c features.

39



First, sharing and distribution level evolution obey speci�c rules. I have therefore set up a test to
verify this behavior. These new rules are summarized in tables 5.3 and 5.4.

Another notable di�erence concerns the possibility of modifying an event received via a PUSH
or PULL mechanism. To validate this behavior, I implemented a test that veri�es that the locked
�eld is set to False after synchronization, thus ensuring that the event remains editable on the
internal instance.

Finally, unlike synchronization with a traditional server, local elements are expected to be shared
between internal instances. I therefore developed speci�c tests con�rming that:

• local tags are synchronized correctly

• local galaxies follow the same behavior and are also propagated

Distribution on A Result on B
Your organisation only Event/object/attribute not pushed if triggering push

of already locally (on instance A) published event.
Event/object/attribute synced on publication of an
event, even if the organisation publishing is not the
host organisation of the instance

This community only Event/object/attribute distribution stays ’This com-
munity only’ on B.

Connected communities Event/object/attribute distribution stays ’Connected
communities’ on B

All communities Event/object/attribute distribution stays ’All commu-
nities on B’

Table 5.3: Case of internal Push: Instance A→ Instance B

Distribution on A Result on B
Your organisation only Event/object/attribute pulled in only if the sync user

is member of the event’s owner organisation. Event
distribution stays ’Your organisation only’ on B

This community only Event/object/attribute distribution decreased to
’Your organisation only’ on B

Connected communities Event/object/attribute distribution decreased to ’This
community only’ on B

All communities Event/object/attribute distribution stays ’All commu-
nities’ on B

Table 5.4: Case of internal Pull: Instance B← Instance A

Sharing Group Tests

In order to validate the proper functioning of Sharing Groups, I developed a test consisting of
creating an event with a distribution level set to Sharing Group 1 (see Figure 5.3), then publishing
it.

In accordance with the de�nition of this sharing group, the event must be synchronized on the
MISP, MISP 2, and MISP 5 instances, but remain accessible only to organizations that are mem-
bers of this group, namely Org 1 and Org 2.

40



5.6 Pipeline for deploying multiple instances of MISP

Now that synchronization tests are running correctly locally, it’s time to return to the initial goal:
to be able to integrate and run them directly within a Forgejo pipeline. However, to make this
possible, I need to slightly adapt my method of deploying instances.

This is because the Forgejo pipeline runs in an LXC container. In this context, it is not possible
to launch Docker containers inside it to host, for example, the MariaDB database or the Redis
service. We must therefore opt for a classic installation of these services directly on the LXC
container (see Figure 5.6)

With this new con�guration:

• all MISP instances share the same host (mysql_host)

• but each has its own dedicated database (mysql_database)

Regarding Redis, the con�guration remains broadly similar to that used locally, except that it is
no longer run in a Docker container. However, there is one limiting factor: Redis only allows
15 separate databases to be con�gured on the same host. However, a MISP instance currently
requires two Redis databases (one for MISP’s internal tasks and one for SimpleBackgroundJobs).
This means that a maximum of seven MISP instances can be deployed simultaneously in this test
con�guration (14 Redis databases used out of 15 available). Despite this constraint, this number of
instances is still su�cient to cover most of the test scenarios needed to evaluate synchronizations.

Figure 5.6: Technical architecture for pipeline deployment of 2 MISP instances

41



To recap, I will outline the step-by-step operation of the pipeline (shown in Figure 5.7).

First, I start with a blank Ubuntu container, on which I install all the modules necessary for MISP
to function. Next, I retrieve the latest version of the MISP code, then I launch the necessary
services (Redis, MariaDB) directly on the container.

Once these services are available, I deploy my di�erent MISP instances, activate Apache to enable
communication with them, and then start the workers to manage background tasks (such as
publishing events). I then make the necessary API calls to con�gure the connections between my
instances. Finally, I run my Python tests to verify the synchronization features.

However, I had to remove certain steps from the classic pipeline, such as Update JSON (which
�lls empty MISP instances with basic data). This step took too long (about three minutes per
instance) and was not essential for testing the synchronization features.

42



Figure 5.7: Lightly simpli�ed version of the pipeline for deploying multiple MISP instances

43



5.7 Result analysis

At this stage, 53 synchronization tests have been implemented to cover di�erent data sharing
scenarios. Among them, 10 fail during execution:

2 failures are related to an anomaly in the processing of API requests, concerning the acceptance
and rejection of proposals on an attribute. This anomaly was quickly corrected by the develop-
ment team.

Two other failures can be considered false positives. As in other test scenarios, I had assumed
that analyst data and sightings were synchronized as soon as an event was published. In reality,
however, an explicit push all action by the administrator is required:

• Non-synchronization: an analyst data attached to an event is not synchronized during a
PUSH action to a server.

• Non-synchronization: A sighting attached to an event is not synchronized during a PUSH
action to a server.

The last six failures correspond to real data synchronization issues between instances of the ap-
plication:

• Non-synchronization: a local tag attached to an event is not synchronized during a PULL
action between internal servers.

• Non-synchronization: a local galaxy cluster attached to an event is not synchronized
during a PULL action between internal servers.

• Incorrect synchronization (vulnerability): a galaxy cluster with a distribution of Your
Organization Only, but belonging to a galaxy with a distribution of This Community Only,
is nevertheless synchronized during a PULL, when it should not be.

• Incorrect synchronization (vulnerability): a galaxy whose distribution is This Commu-
nity Only is shared during a PUSH if it contains clusters with the distributions Connected
Communities or All Communities.

• Incorrect distribution update (vulnerability): a galaxy with a This Community Only
distribution does not change to Your Organization Only after a PULL, which allows another
instance to also perform a PULL (see Figure 5.8).

• Incorrect distribution update (vulnerability): a galaxy with a Connected Communities
distribution does not switch to This Community Only after a PUSH, which still allows this
instance to perform a PUSH.

44



Figure 5.8: Example output for a failed synchronization test

It should be noted that these errors mainly concern speci�c scenarios that are relatively rarely
used by most users. However, identifying them highlights the importance of regularly checking
all synchronization mechanisms, including those that are used less frequently.

From a quantitative point of view, the complete execution of the Python tests takes an average
of 650 seconds. Adding the phase of building and deploying instances via the pipeline, the total
time between a git push and obtaining the results is around 20 minutes (see Appendix A). When
designing my tests, I opted for a division strategy to improve readability, but factoring certain
tests could save execution time.

In terms of functional coverage, the tests carried out cover approximately 90% of MISP’s syn-
chronization features. The remaining cases mainly concern more complex scenarios, in particu-
lar using sharing groups in more advanced scenarios (sharing groups on galaxy clusters, several
complex sharing groups on the same instance, etc.).

45



46



6 Project Management

6.1 Working method

Most of the work carried out during this internship was done independently. For the �rst part,
I started by learning how to use and understand how MISP works on my own, with the help of
the various documentation available. Then, if I encountered any problems, I could ask Sami for
additional information if necessary.

For the second part, Sami initially gave me a goal to achieve, and I was then free to choose the
method to achieve it. However, we did a progress review about once a week, so that I could
present my progress and we could discuss the methods I had chosen.

6.2 Gantt

The following Gantt chart (see Figure 6.1) summarizes the tasks I completed and the time I spent
on them. I had to update it several times due to unforeseen circumstances and the actual time
spent on some tasks.

47



Figure 6.1: Gantt chart for my internship

48



7 Project outlook

This internship highlighted several errors in the synchronization of the MISP application. The
�rst step is therefore to correct the eight cases of incorrect data synchronization revealed by my
tests.

Furthermore, as the objective of these tests is to run automatically each time the code is modi�ed
(push on a branch of the repository), it will be necessary to deploy a dedicated Forgejo runner
on the CIRCL local server, accessible at https://helga.circl.lu/. This runner will be
responsible for executing the various pipelines:

• the main pipeline, which veri�es the proper functioning of an instance

• as well as the one I developed, which allows checking the correct synchronization between
several instances

The tests I have implemented can also serve as models for MISP developers when writing future
tests, particularly when adding new synchronization-related features.

Finally, as presented in section 5.4, I also designed a script to deploy multiple MISP instances.
Beyond its initial use—creating and testing synchronization scenarios—this script can be reused
in other practical contexts requiring the deployment of multiple MISP instances.

49

https://helga.circl.lu/


50



8 Conclusion

The main objective of this internship was to ensure the reliability of cybersecurity information
sharing between di�erent MISP instances, an application dedicated to the management and dis-
semination of Cyber Threat Intelligence. To achieve this goal, I �rst contributed to the core of
the application by making various functional improvements. I then worked on setting up a test
topology to validate all the synchronization mechanisms I had learned to master. Finally, I wrote
a series of tests in Python that revealed several synchronization errors. From an automation per-
spective, all that remains is to deploy a worker on the CIRCL local server to �nalize the integration
of the tests into the CI/CD chain.

More generally, this internship allowed me to acquire many skills. I participated for the �rst
time in the development of an open source project, and I learned how to design and implement a
continuous integration chain from start to �nish. I also had the opportunity to contribute to an
application that is a major player in cybersecurity in Europe.

Finally, this experience reinforced my decision to focus my professional career on projects that
combine software development and cybersecurity. It showed me that these two �elds are not
separate, but more and more indissociable in modern information system protection solutions.

51



52



Bibliography / Webography

[1] CIRCL. Introducing the new extended events feature in misp. https://www.
misp-project.org/2018/04/19/Extended-Events-Feature.html.
Visited on August 21, 2025. 19

[2] CIRCL. Misp - user guide a threat sharing platform. https://www.circl.lu/doc/
misp/book.pdf. Visited on August 21, 2025. 12, 16, 55

[3] CIRCL. Misp concepts cheat sheet. https://www.misp-project.org/
misp-training/cheatsheet.pdf. Visited on August 21, 2025. 9

[4] CIRCL. Pymisp’s documentation. https://pymisp.readthedocs.io/en/
latest/. Visited on August 21, 2025. 34

[5] CIRCL. Rfc 2350 circl - the cert for the private sector, communes and non-governmental
entities in luxembourg. https://www.circl.lu/mission/rfc2350/. Visited
on August 21, 2025. 3

53

https://www.misp-project.org/2018/04/19/Extended-Events-Feature.html
https://www.misp-project.org/2018/04/19/Extended-Events-Feature.html
https://www.circl.lu/doc/misp/book.pdf
https://www.circl.lu/doc/misp/book.pdf
https://www.misp-project.org/misp-training/cheatsheet.pdf
https://www.misp-project.org/misp-training/cheatsheet.pdf
https://pymisp.readthedocs.io/en/latest/
https://pymisp.readthedocs.io/en/latest/
https://www.circl.lu/mission/rfc2350/


54



List of Figures

3.1 Landing page of the application (here a training instance) . . . . . . . . . . . . . . 9

3.2 Example of basic information associated with an Event in MISP . . . . . . . . . . 10

3.3 Example of attributes and objects linked to an Event in MISP . . . . . . . . . . . . 10

3.4 Example of galaxies associated with an Event in MISP . . . . . . . . . . . . . . . . 11

3.5 Diagram showing the synchronization setup between two instances [2] . . . . . . 12

3.6 Setup page to synchronize with another MISP instance . . . . . . . . . . . . . . . 14

3.7 Example of a sharing group between organizations from three MISP instances [2] 16

4.1 Index of events with extended event display . . . . . . . . . . . . . . . . . . . . . 20

4.2 Index of attributes for a misp training instance. Here three attributes have been
identi�ed in warning lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 New interface element (in yellow) showing the explicit separation warninglists
according to their category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Default roles index of a MISP instance . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 View of a custom MISP galaxy with 2 cluster . . . . . . . . . . . . . . . . . . . . . 26

4.6 View of a MISP cluster indicating the number of attributes associated with it . . . 26

5.1 Local setup of a forgejo instance and a runner . . . . . . . . . . . . . . . . . . . . 30

5.2 Technical architecture for local deployment of 2 MISP instances . . . . . . . . . . 33

5.3 Setup scenario for synchronization tests . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Event with a global tag and a local tag . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Example of proposals to delete and modify an attribute . . . . . . . . . . . . . . . 39

5.6 Technical architecture for pipeline deployment of 2 MISP instances . . . . . . . . 41

5.7 Lightly simpli�ed version of the pipeline for deploying multiple MISP instances . 43

5.8 Example output for a failed synchronization test . . . . . . . . . . . . . . . . . . . 45

55



6.1 Gantt chart for my internship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Graphical display of the execution status of the Forgejo pipeline with synchro-
nization tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

56



List of Tables

5.1 Case of Push: Instance A→ Instance B . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Case of Pull: Instance B← Instance A . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Case of internal Push: Instance A→ Instance B . . . . . . . . . . . . . . . . . . . 40

5.4 Case of internal Pull: Instance B← Instance A . . . . . . . . . . . . . . . . . . . 40

57



58



Listings

4.1 Example of a POST API request to a REST endpoint . . . . . . . . . . . . . . . . . 20

4.2 Filter function used for extended �ag . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Example of a synchronization test . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

59



60



Glossary

A�ero GPL The A�ero General Public License (AGPL) is a free license that, like the GNU GPL,
guarantees users the right to use, modify, and redistribute software, but also requires the
publication of modi�ed source code when software is used via a network (such as a web
service). 7

API Application Programming Interface: Interface enabling di�erent software applications to
interact and exchange data securely 4, 8, 20, 24, 25, 26, 27, 32, 33, 34, 42, 44, 59

CERT Computer Emergency Response Team 3

CI/CD Continous Integration/Continous Delivery 3, 4, 5

CIRCL Computer Incident Response Center Luxembourg 1, 3, 7, 8, 29, 49

MVC Model(data and business logic management)-View (user interface)-Controller (user action
processing logic) 8

uuid Universally unique identi�er (128-bit label used to uniquely identify objects) 12, 13, 19, 20,
33

61



62



Appendix

63



A Forgejo pipeline

Figure A.1: Graphical display of the execution status of the Forgejo pipeline with synchronization
tests

64



Résumé

Ce document présente mon stage de �n d’études réalisé au sein du CIRCL, dans le cadre de ma
formation à TELECOM Nancy. Le CIRCL est un service public d’assistance en cas d’incident
informatique pour les entreprises, qui développe également plusieurs outils open-source. Parmi
eux �gure MISP, une application permettant de documenter des cybermenaces et de les partager
facilement. C’est sur cette application que j’ai travaillé durant l’intégralité de mon stage.

Dans un premier temps, j’ai contribué à l’implémentation de nouvelles fonctionnalités et à la cor-
rection de bugs, a�n de me familiariser avec l’architecture et le fonctionnement de l’application.
Une fois MISP bien maîtrisé, j’ai pu aborder la seconde partie de mon stage, consistant à tester le
bon fonctionnement de la synchronisation des données entre di�érentes instances de l’application,
et ce à chaque commit e�ectué sur le dépôt principal.

Pour atteindre cet objectif, j’ai conçu une pipeline d’intégration continue sur Forgejo, un gestion-
naire de dépôts de code hebergeable en local. Cette pipeline déploie automatiquement plusieurs
instances de MISP dans un conteneur LXC, puis exécute une série de tests simulant divers scé-
narios de synchronisation pouvant survenir en conditions réelles.

Mots-clés : Open-source development, Cyber threat intelligence, Data synchronization, Contin-
uous integration, Automated testing

Abstract

This document presents my end-of-studies internship at CIRCL, as part of my training at TELE-
COM Nancy. CIRCL is a public service that provides assistance to companies in the event of IT
incidents and also develops several open-source tools. These include MISP, an application that
allows cyber threats to be documented and easily shared. I worked on this application throughout
my internship.

Initially, I helped implement new features and �x bugs in order to familiarize myself with the
application’s architecture and functionality. Once I had mastered MISP, I was able to move on
to the second part of my internship, which consisted of testing the proper functioning of data
synchronization between di�erent instances of the application, each time a commit was made to
the main repository.

To achieve this goal, I designed a continuous integration pipeline on Forgejo, a locally hosted
code repository manager. This pipeline automatically deploys multiple instances of MISP in an
LXC container, then runs a series of tests simulating various synchronization scenarios that could
occur in real-world conditions.

Keywords : Open-source development, Cyber threat intelligence, Data synchronization, Con-
tinuous integration, Automated testing


	Acknowledgements
	Contents
	Introduction
	Internship context
	Company overview
	Internship Issue
	Initial project description
	Personal Objective

	Technologies used
	CakePHP
	Python
	Docker
	LXC
	GitHub Actions
	Forgejo Actions


	State of the art of MISP
	Project history
	Open source development and community collaboration
	Technical Architecture
	Web Interface
	Data storage
	Background workers

	Main features
	Identity and Access Management
	Key items

	Synchronization
	How it works
	Additions and synchronization options
	Data distribution level
	Sharing groups

	Ecosystem and extensibility
	Data enrichment
	Import and export formats

	Comparison with other solutions

	Functionality development and correction
	Extended events
	Definition
	Feature request: whether or not to display the extended event in the index
	Feature request: flag to filter with restsearch request

	Warning lists
	Definition
	Filtering on the attribute index
	Explicit display of the warninglist category

	Roles
	Definition
	Limiting the number of results from a restSearch

	Minor additions
	Review of my contribution to misp-core

	Implementation of synchronization tests
	Problem definition
	Choice of technologies used
	Code hosting platform
	Runner containerization

	Migration from GitHub pipeline to Forgejo
	Explanation of Github CI pipeline for MISP
	Modification apported for the Forgejo CI

	Setting up multiple local instances
	Issue encountered
	Deploying multiple instances
	Setting up synchronization between instances
	Additional features

	Development of synchronization tests
	Technology and architecture for testing
	Topology for testing
	Details of the various tests implemented

	Pipeline for deploying multiple instances of MISP
	Result analysis

	Project Management
	Working method
	Gantt

	Project outlook
	Conclusion
	Bibliography / Webography
	List of Figures
	List of Tables
	Listings
	Glossary
	Appendix
	Forgejo pipeline
	Résumé
	Abstract


