Information Sharing and Taxonomies

Practical Classification of Threat Indicators using MISP

Team CIRCL

http://www.misp-project.org/
Twitter: @MISPProject

MISP Training @ Luxembourg December Edition 2019 20191203
Tagging is a simple way to attach a classification to an event or an attribute.

In the early version of MISP, tagging was local to an instance.

Classification must be globally used to be efficient.

After evaluating different solutions of classification, we built a new scheme using the concept of machine tags.
Triple tag, or machine tag, format was introduced in 2004 to extend geotagging on images.

A machine tag is just a tag expressed in way that allows systems to parse and interpret it.

Still have a human-readable version:

```plaintext
admiralty-scale:source-reliability="c"
```
MISP TAXONOMIES

- Taxonomies are implemented in a simple JSON format.
- Anyone can create their own taxonomy or reuse an existing one.
- The taxonomies are in an independent git repository\(^1\).
- These can be freely reused and integrated into other threat intel tools.
- Taxonomies are licensed under Creative Commons (public domain) except if the taxonomy author decided to use another license.

\(^1\)https://www.github.com/MISP/misp-taxonomies/
EXISTING TAXONOMIES

- NATO - **Admiralty Scale**
- CIRCL Taxonomy - **Schemes of Classification in Incident Response and Detection**
- eCSIRT and IntelMQ incident classification
- EUCI **EU classified information marking**
- Information Security Marking Metadata from DNI (Director of National Intelligence - US)
- NATO Classification Marking
- OSINT **Open Source Intelligence - Classification**
- TLP - **Traffic Light Protocol**
- Vocabulary for Event Recording and Incident Sharing - **VERIS**
- And many more like ENISA, Europol, or the draft FIRST SIG Information Exchange Policy.
Want to write your own taxonomy? 1/2

```json
{
  "namespace": "admiralty-scale",
  "description": "The Admiralty Scale (also called the NATO System) is used to rank the reliability of a source and the credibility of an information."

  "version": 1,

  "predicates": [
    {
      "value": "source-reliability",
      "expanded": "Source Reliability"
    },
    {
      "value": "information-credibility",
      "expanded": "Information Credibility"
    }
  ]
}
```
Want to write your own taxonomy? 2/2

Publishing your taxonomy is as easy as a simple git pull request on misp-taxonomies².

²https://github.com/MISP/misp-taxonomies
How are taxonomies integrated in MISP?

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="1"</td>
<td>admiralty-scale</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="2"</td>
<td>admiralty-scale</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="3"</td>
<td>admiralty-scale</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="4"</td>
<td>admiralty-scale</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="5"</td>
<td>admiralty-scale</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:information-credibility="6"</td>
<td>admiralty-scale</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="a"</td>
<td>admiralty-scale</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="b"</td>
<td>admiralty-scale</td>
<td>15</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="c"</td>
<td>admiralty-scale</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="d"</td>
<td>admiralty-scale</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="e"</td>
<td>admiralty-scale</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>✅</td>
<td>✗</td>
<td>admiralty-scale:source-reliability="f"</td>
<td>admiralty-scale</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>✅</td>
<td>✗</td>
<td>adversary:infrastructure-action="monitoring-active"</td>
<td>adversary</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>✅</td>
<td>✗</td>
<td>adversary:infrastructure-action="passive-only"</td>
<td>adversary</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- MISP administrator can just import (or even cherry pick) the namespace or predicates they want to use as tags.
- Tags can be exported to other instances.
- Tags are also accessible via the MISP REST API.
Applying rules for distribution based on tags:

Filtering the distribution of events among MISP instances
Other use cases using MISP taxonomies

- Tags can be used to set events or attributes for **further processing by external tools** (e.g. VirusTotal auto-expansion using Viper).
- Ensuring a classification manager **classifies the events before release** (e.g. release of information from air-gapped/classified networks).
- **Enriching IDS export** with tags to fit your NIDS deployment.
- Using **IntelMQ** and MISP together to process events (tags limited per organization introduced in MISP 2.4.49).
Future functionalities related to MISP taxonomies

- **Sighting** support (thanks to NCSC-NL) is integrated in MISP allowing to auto expire IOC based on user detection.

- Adjusting taxonomies (adding/removing tags) based on their score or visibility via sighting.

- Simple taxonomy editors to help non-technical users to create their taxonomies.

- **Filtering mechanisms** in MISP to rename or replace taxonomies/tags at pull and push synchronisation.

- More public taxonomies to be included.
- **Python module** to handle the taxonomies
- **Offline** and online mode (fetch the newest taxonomies from GitHub)
- Simple **search** to make tagging easy
- Totally independent from MISP
- **No external dependencies** in offline mode
- Python3 only
- Can be used to create & **dump a new taxonomy**
from pytaxonomies import Taxonomies

taxonomies = Taxonomies()
taxonomies.version
=> '20160725'
taxonomies.description
=> 'Manifest file of MISP taxonomies available.'

list(taxonomies.keys())
=> ['tlp', 'eu-critical-sectors', 'de-vs', 'osint', 'circl', 'veris',
'ecsirt', 'dhs-ciip-sectors', 'fr-classif', 'misp', 'admiralty-scale', ...]
taxonomies.get('enisa').description
'The present threat taxonomy is an initial version that has been developed on
the basis of available ENISA material. This material has been used as an ENISA-internal
structuring aid for information collection and threat consolidation purposes.
It emerged in the time period 2012—2015.'

print(taxonomies.get('circl'))
circl:incident-classification="vulnerability"
circl:incident-classification="malware"
circl:incident-classification="fastflux"
circl:incident-classification="system-compromise"
circl:incident-classification="sql-injection"
....

print(taxonomies.get('circl').machinetags_expanded())
circl:incident-classification="Phishing"
circl:incident-classification="Malware"
circl:incident-classification="XSS"
circl:incident-classification="Copyright issue"
circl:incident-classification="Spam"
circl:incident-classification="SQL Injection"
False-positives are a **common issue** in threat intelligence sharing.

It’s often a contextual issue:
- False-positives might be different per community of users sharing information.
- Organizations might have their **own view** on false-positives.

Based on the success of the MISP taxonomy model, we built misp-warninglists.
MISP warning lists

- misp-warninglists are lists of well-known indicators that can be associated to potential false positives, errors, or mistakes.

- Simple JSON files

```json
{
  "name": "List of known public DNS resolvers",
  "version": 2,
  "description": "Event contains one or more public DNS resolvers as attribute with an IDS flag set",
  "matching_attributes": [
    "ip-src",
    "ip-dst"
  ],
  "list": [
    "8.8.8.8",
    "8.8.4.4", ...
  ]
}
```
MISP WARNING LISTS

The warning lists are integrated in MISP to display an info/warning box at the event and attribute level.

Enforceable via the API where all attributes that have a hit on a warninglist will be excluded.

This can be enabled at MISP instance level.

Default warning lists can be enabled or disabled like known public resolver, multicast IP addresses, hashes for empty values, rfc1918, TLDs or known Google domains.

The warning lists can be expanded or added in JSON locally or via pull requests.

Warning lists can be also used for critical or core infrastructure warning, personally identifiable information...
Q&A

- https://github.com/MISP/MISP
- https://github.com/MISP/misp-taxonomies
- https://github.com/MISP/PyTaxonomies
- https://github.com/MISP/misp-warninglists
- info@circl.lu (if you want to join one of the MISP community operated by CIRCL)
- PGP key fingerprint: CA57 2205 CO02 4E06 BA70 BE89 EAAD CFFC 22BD 4CD5