MISP and Decaying of Indicators

MISP AND DECAYING OF INDICATORS

AN INDICATOR SCORING METHOD AND ONGOING IMPLE

TEAM CIRCL

INFO@CIRCL

OCTOBER 2, 2

MISP and Decaying of Indicators

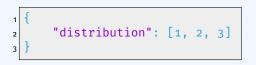
AN INDICATOR SCORING METHOD AND ONGOING IMPLE-

TEAM CIRCL

INFO@CIRCL.LU

OCTOBER 2, 2024

-Expiring IOCs: Why and How?


EXPIRING IOCS: WHY AND HOW?

Indicators - Problem Statement

- Sharing information about threats is crucial
- Organisations are sharing more and more

Contribution by unique organisation (Orgc.name) on MISPPriv:

Date	Unique Org
2013	17
2014	43
2015	82
2016	105
2017	118
2018	125
2019-10	135

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Indicators - Problem Statement

INDICATORS - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and time-to-live issues
 - ► Each user/organisation has **different use-cases** and interests
 - Conflicting interests such as operational security, attribution,... (depends on the user)
 - → Can be partially solved with *Taxonomies*

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

-Indicators - Problem Statement

DICATORS - PROBLEM STATEMENT

rious users and organisations can share data via Mi litiple parties can be involved

(depends on the user)
be partially solved with Toxonomies

INDICATORS - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and time-to-live issues
 - ► Each user/organisation has **different use-cases** and interests
 - Conflicting interests such as operational security, attribution,... (depends on the user)
 - \rightarrow Can be partially solved with *Taxonomies*
- Attributes can be shared in large quantities (more than 7.3 million on MISPPRIV)
 - Partial info about their freshness (Sightings)
 - Partial info about their **validity** (last update)
 - → Can be partially solved with our *Decaying model*

MISP and Decaying of Indicators Expiring IOCs: Why and How?

2024-

-Indicators - Problem Statement

- ➤ Partial info about their freshness (Sighting. Partial info about their validity (last update)

REQUIREMENTS TO ENJOY THE DECAYING FEATURE IN MISP

- Starting from MISP 2.4.116, the decaying feature is available
- Don't forget to update the decay models and enable the ones you want
- The decaying feature has no impact on the information in MISP, it's just an overlay to be used in the user-interface and API
- Decay strongly relies on *Taxonomies* and *Sightings*, don't forget to review their configuration

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Requirements to enjoy the decaying feature

in MISP

REMENTS TO ENJOY THE DECAYING FEATURE IN

- Starting from MISP 2.4.116, the decaying feature is available
 Don't forget to update the decay models and enable the
- The decaying feature has no impact on the information in MISP, it's just an overlay to be used in the user-interface and
- API

 Decay strongly relies on Taxonomies and Sightings, don't forget to review their configuration

SIGHTINGS - REFRESHER

Sightings add temporal context to indicators. A user, script or an IDS can extend the information related to indicators by reporting back to MISP that an indicator has been seen, or that an indicator can be considered as a false-positive

- *Sightings* give more credibility/visibility to indicators
- This information can be used to **prioritise and decay** indicators

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Sightings - Refresher

Sightings add temporal context to indicators. A user, script or a 105 can extend the information related to indicators. A user, script or a 105 can extend the information related to indicators by specific or that an indicator can be considered as a fix have pass 12 or of the an indicator can be considered as a fix have pass 12 or of the an indicator can be considered as a fix have pass 12 or of the an indicator as a fix information can be used to prioritise and decay indicators

Indicators

Open **Indicators

**Ope

ORGANISATIONS OPT-IN - SETTING A LEVEL OF CONFIDENCE

MISP is a peer-to-peer system, information passes through multiple instances.

- **Producers can add context** (such as tags from *Taxonomies*, *Galaxies*) about their asserted confidence or the reliability of the data
- Consumers can have **different levels of trust** in the producers and/or analysts themselves
- Users might have other contextual needs
 - → Achieved thanks to *Taxonomies*

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

-Organisations opt-in - setting a level of confidence

ANISATIONS OPT-IN - SETTING A LEVEL OF FIDENCE

MISP is a peer-to-peer system, information passes through multiple instances.

- In Producers can add context (such as tags from Taxonomie Goloxies) about their asserted confidence or the reliabilit the data
 Consumers can have different levels of trust in the
- producers and/or analysts themselves
 - sers might have other contextual needs

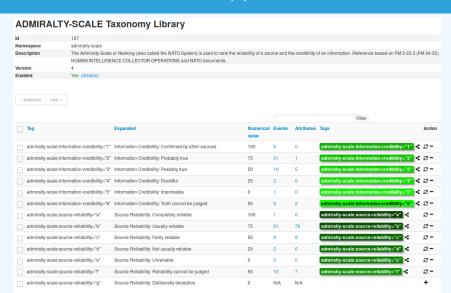
-- Actived Citation to 10

TAXONOMIES - REFRESHER (1)

Taxonomies « previous 1 2 next » Description Version Enabled Required Active Tags Actions Workflow support language is a common language to support intelligence analysts to perform their analysis on data and information. 5/5 - o i vocabulaire-des-probabilites-estimatives Ce vocabulaire attribue des valeurs en pourcentage à certains énoncés de probabilité 179 threats-to-dns An overview of some of the known attacks related to DNS as described by Torabi, S., + 🕢 🗑 Boukhtouta, A., Assi, C., & Debbabi, M. (2018) in Detecting Internet Abuse by Analyzing Passive DNS Traffic: A Survey of Implemented Systems. IEEE Communications Surveys & Tutorials, 1-1, doi:10.1109/comst.2018.2849614 targeted-threat-index The Targeted Threat Index is a metric for assigning an overall threat ranking score to email 2 - @ i messages that deliver malware to a victim's computer. The TTI metric was first introduced at SecTor 2013 by Seth Hardy as part of the talk "RATastrophe: Monitoring a Malware

- Tagging is a simple way to attach a classification to an *Event* or an *Attribute*
- Classification must be globally used to be efficient

Menagerie" along with Katie Kleemola and Greg Wiseman


MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Taxonomies - Refresher (1)

Tagging is a simple way to attach a classification must be reliable to a felicient.

TAXONOMIES - REFRESHER (2)

→ Cherry-pick allowed *Tags*

MISP and Decaying of Indicators \sqsubseteq Expiring IOCs: Why and How?

2024-

—Taxonomies - Refresher (2)

TAXONOMIES - REFRESHER (3)

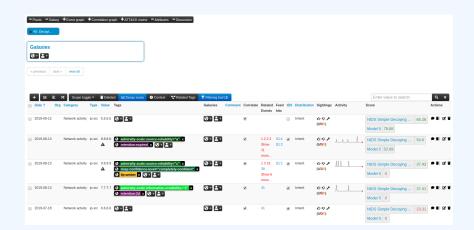
- Some taxonomies have numerical_value
 - \rightarrow Can be used to prioritise Attributes

Description	Value
Completely reliable	100
Usually reliable	75
Fairly reliable	50
Not usually reliable	25
Unreliable	О
Reliability cannot be judged	50 ?
Deliberatly deceptive	0?

Value
100
75
50
25
0
50 ?

MISP and Decaying of Indicators -Expiring IOCs: Why and How? -Taxonomies - Refresher (3)

score(Attribute) = base score(Attribute, Model) • decay(Model, time)


Where.

- $score \in [0, +\infty]$
- \blacksquare base score \in [0, 100]
- decay is a function defined by model's parameters controlling decay speed
- Attribute Contains Attribute's values and metadata (Taxonomies, Galaxies, ...)
- Model Contains the *Model*'s configuration

Current implementation in MISP

CURRENT IMPLEMENTATION IN MISP

IMPLEMENTATION IN MISP: Event/view

- Decay score toggle button
 - ► Shows Score for each *Models* associated to the *Attribute* type

MISP and Decaying of Indicators

Current implementation in MISP

-Implementation in MISP: Event/view

IMPLEMENTATION IN MISP: API RESULT

/attributes/restSearch

```
"Attribute": [
    "category": "Network activity",
    "type": "ip-src",
    "to_ids": true,
    "timestamp": "1565703507",
    "value": "8.8.8.8",
    "decay score": [
        "score": 54.475223849544456,
        "decayed": false,
        "DecayingModel": {
          "id": "85",
          "name": "NIDS Simple Decaying Model"
```

MISP and Decaying of Indicators

Current implementation in MISP

Implementation in MISP: API result

And the control of th

IMPLEMENTATION IN MISP: PLAYING WITH MODELS

- Automatic scoring based on default values
- **User-friendly UI** to manually set *Model* configuration (lifetime, decay, etc.)
- **Simulation** tool
- Interaction through the API
- Opportunity to create your **own** formula or algorithm

MISP and Decaying of Indicators

Current implementation in MISP

Implementation in MISP: Playing with Models

Implementation in MISP: Playing with Models

—Decaying Models in Depth

DECAYING MODELS IN DEPTH

When scoring indicators¹, multiple parameters² can be taken into account. The **base score** is calculated with the following in mind:

- Data reliability, credibility, analyst skills, custom prioritisation tags (economical-impact), etc.
- Trust in the source

$$base_score = \omega_{tq} \cdot tags + \omega_{sc} \cdot source_confidence$$

Where,

$$\omega_{sc} + \omega_{ta} = 1$$

¹Paper available: https://arxiv.org/pdf/1803.11052

²at a variable extent as required

Scoring Indicators: base_score (2)

Current implentation ignores source_confidence:

$$\rightarrow$$
 base_score = tags

	Computation			
Tag	Eff. Ratio		numerical_value	Result
admiralty-scale:source-reliability="Completely reliable"	0.50	*	100.00	50.00
phishing:psychological-acceptability="high"	0.50	*	75.00	37.50
				87.50

ightarrow The base_score can be use to prioritize attribute based on their attached context and source

MISP and Decaying of Indicators

Decaying Models in Depth

Scoring Indicators: base_score (2)

SCORING INDICATORS: DECAY SPEED (1)

score(Attribute) = base score(Attribute, Model) • decay(Model, time)

The decay is calculated using:

- The lifetime of the indicator
 - ► May vary depending on the indicator type
 - ► short for an IP, long for an hash
- The decay rate, or speed at which an attribute loses score over time
- The time elapsed since the latest update or sighting

MISP and Decaying of Indicators

Decaying Models in Depth

Scoring Indicators: decay speed (1)

RING INDICATORS: DECAY SPEED (1)

ore(minute) = base_score(minute, most) + decay(most, s e decay is calculated using:

- e decay is calculated using: The lifetime of the indicator
- May vary depending on the indicator:
 short for an IP, long for an hash
- The decay rate, or speed at which an attribute loses so over time
 - m The time elapsed since the latest update or sighting

SCORING INDICATORS: PUTTING IT ALL TOGHETHER

ightarrow decay rate is **re-initialized upon sighting** addition, or said differently, the score is reset to its base score as new *sightings* are applied.

$$score = base_score \cdot \left(1 - \left(\frac{t}{\tau}\right)^{\frac{1}{\delta}}\right)$$

- $au au = ext{lifetime}$
- \bullet $\delta = \text{decay speed}$

MISP and Decaying of Indicators

Decaying Models in Depth

Scoring Indicators: putting it all toghether

**The Common Com

IMPLEMENTATION IN MISP: MODELS DEFINITION

$$\Rightarrow$$
 score = base_score $\cdot \left(1 - \left(\frac{t}{\tau}\right)^{\frac{1}{\delta}}\right)$

Models are an instanciation of the formula where elements can be defined:

- Parameters: lifetime, decay rate, threshold
- base score
- default base_score
- formula
- associate Attribute types
- creator organisation

MISP and Decaying of Indicators

Decaying Models in Depth

Implementation in MISP: Models definition

INTATION IN MISP: MODELS DEFINITION

els are an instanciation of the formula where elements of the for

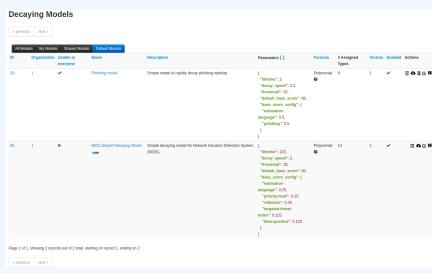
m Parameters: lifetime, decay_rate, thresho
m base_score

mase_score default base_score

m formula
m associate Attribute types
creator organisation

IMPLEMENTATION IN MISP: MODELS TYPES

MISP and Decaying of Indicators Decaying Models in Depth


-Implementation in MISP: Models Types

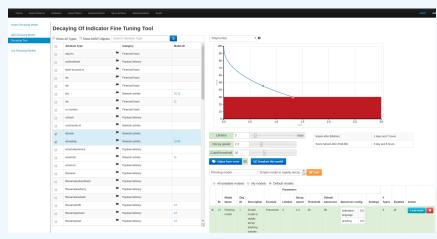
Multiple model types are available

- **Default Models**: Models created and shared by the community. Available from misp-decaying-models repository³.
 - ightharpoonup Not editable
- Organisation Models: Models created by a user belonging to an organisation
 - ► These models can be hidden or shared to other organisation
 - ightharpoonup ightharpoonup Editable

³https://github.com/MISP/misp-decaying-models.git

IMPLEMENTATION IN MISP: INDEX

View, update, add, create, delete, enable, export, import


MISP and Decaying of Indicators

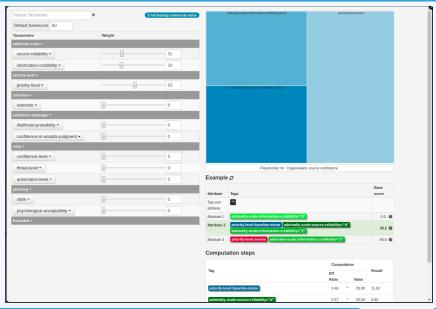
Decaying Models in Depth

Implementation in MISP: Index

INDECEMBRITATION IN MISP: INDEX

IMPLEMENTATION IN MISP: FINE TUNING TOOL

Create, modify, visualise, perform mapping


MISP and Decaying of Indicators

Decaying Models in Depth

—Implementation in MISP: Fine tuning tool

IMPLEMENTATION IN MISP. FINE TUNING TOOL

IMPLEMENTATION IN MISP: base_score TOOL

MISP and Decaying of Indicators

Decaying Models in Depth

-Implementation in MISP: base_score tool

IMPLEMENTATION IN MISP: SIMULATION TOOL

Simulate Attributes with different Models

MISP and Decaying of Indicators

Decaying Models in Depth

—Implementation in MISP: simulation tool

IMPLEMENTATION IN MISP: API QUERY BODY

/attributes/restSearch

```
"includeDecayScore": 1,
"includeFullModel": 0,
"excludeDecayed": 0,
"decayingModel": [85],
"modelOverrides": {
    "threshold": 30
}
"score": 30,
```

MISP and Decaying of Indicators

Decaying Models in Depth

-Implementation in MISP: API query body

CREATING A NEW DECAY ALGORITHM (1)

The current architecture allows users to create their **own** formulae.

- 1. Create a new file \$filename in app/Model/DecayingModelsFormulas/
- 2. Extend the Base class as defined in DecayingModelBase
- 3. Implement the two mandatory functions computeScore and isDecayed using your own formula/algorithm
- 4. Create a Model and set the formula field to \$filename

Use cases:

- Add support for **more feature** (expiration taxonomy)
- Query external services then influence the score
- Completely **different approach** (i.e streaming algorithm)

MISP and Decaying of Indicators Decaying Models in Depth

-Creating a new decay algorithm (1)

The current architecture allows users to create their on

CREATING A NEW DECAY ALGORITHM (2)

```
1 <?php
include_once 'Base.php';
4 class Polynomial extends DecayingModelBase
      public const DESCRIPTION = 'The description of your new
      decaying algorithm';
      public function computeScore($model, $attribute, $base_score,
      $elapsed time)
         // algorithm returning a numerical score
      public function isDecayed($model, $attribute, $score)
          // algorithm returning a boolean stating
          // if the attribute is expired or not
18
```

MISP and Decaying of Indicators

Decaying Models in Depth

Creating a new decay algorithm (2)

Controlled Section Sec

DECAYING MODELS 2.0

- Improved support of *Sightings*
 - ► False positive *Sightings* should somehow reduce the score
 - ► Expiration *Sightings* should mark the attribute as decayed
- Potential *Model* improvements
 - ► Instead of resetting the score to base_score once a Sighting is set, the score should be increased additively (based on a defined coefficient); thus **prioritizing surges** rather than infrequent Sightings
 - ► Take into account related *Tags* or *Correlations* when computing score
- Increase *Taxonomy* coverage
 - ► Users should be able to manually override the numerical_value of *Tags*
- For specific type, take into account data from other services
 - ► Could fetch data from BGP ranking, Virus Total, Passive X for IP/domain/... and adapt the score

MISP and Decaying of Indicators

Decaying Models in Depth

-Decaying Models 2.0

DECAYING MODELS 2.0

- Improved support of Sightings
- Expiration Sightings should mark the attribute as a
 Potential Model improvements
- Sighting is set, the score should be increased additive (based on a defined coefficient); thus prioritizing surgestated that infromment Sightings
- rather than infrequent Sightings

 Take into account related Tags or Correlations when computing score

 Increase Taxonomy coverage
- Users should be able to manually override the numerical value of Toos
- numerical_value of Togs

 # For specific type, take into account data from other so

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **Decode forth data from PCO median More Total Process

 **